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Oscillation Frequencies of Droplets Held Pendant 
on a Nozzle 

D. W. DEPAOLI, T. C. SCOTT, and 0. A. BASARAN 
CHEMICAL TECHNOLOGY DIVISION 
OAK RIDGE NATIONAL LABORATORY 
OAK RIDGE. TENNESSEE 37831-6224 

Abstract 
Small-amplitude oscillations of liquid droplets held pendant on a nozzle and 

surrounded by either air or another liquid were investigated experimentally. The 
oscillations were induced by mechanical means, and the natural frequencies of 
oscillations were visually determined. Results are compared to existing related 
theories of Miller and Scriven and of Strani and Sabetta. As may be expected, the 
presence of the solid support causes measured oscillation frequencies for the lowest 
oscillation mode to deviate greatly from the Miller and Scriven low viscosity ap- 
proximation ( n  = 2) for free spherical drops. Experiments are in qualitative agree- 
ment with the first ( n  = 1 )  mode predicted by Strani and Sabetta, with the best 
correspondence occurring under circumstances where the ratio of nozzle to drop 
radii is small. The difference between the experimental results and the theory of 
Strani and Sabetta can be attributed to the restrictive boundary conditions of their 
analytic model. Thus, better theoretical characterization of pendant droplet oscil- 
lations will require numerical computations. 

INTRODUCTION 
The behavior of droplets and bubbles is of importance in a multitude of 

applications within the chemical industry as well as such diverse fields as 
meteorology, printing and paint spraying, and mathematical science. 
Within the chemical industry the behavior of bubbles and droplets is a 
major factor in the operation of most multiphase systems such as reactors 
and separations equipment. 

The efficiency of these devices is determined to a large extent by the 
rate of heat and/or mass transfer between drops or bubbles and the con- 
tinuous phase. To improve performance, one must provide the means to 
increase transport rates. Two obvious physical means are to increase the 
interfacial surface area relative to fluid volume and to increase fluid ve- 
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2072 DePAOLI, SCOTT, AND BASARAN 

locities to enhance convection. This is commonly achieved through the 
introduction of finely dispersed fluids through nozzles and by bulk fluid 
agitation. While such an approach achieves the desired results, it represents 
an inefficient usage of energy. 

The next generation of chemical processing equipment will be designed 
with energy efficiency and waste minimization as primary goals. As such, 
increased performance, leading to better materials utilization. must be 
achieved without wasteful use of energy. Major steps toward these goals 
have been achieved through the application of external fields in chemical 
processing equipment (I, 2). Two examples recently developed at Oak 
Ridge National Laboratory are the emulsion-phase contactor (EPC), an 
advanced solvent extraction device, and the electric dispersion reactor 
(EDR), an advanced multiphase liquid reactor. Both of these devices take 
advantage of the fact that applied electrical fields may be used to impart 
a force at the interface of two fluids with differing electrical properties. 
This force may be used to deform and disperse droplets or bubbles at a 
much lower energy consumption rate than by mechanical dispersion. Drop- 
let sizes in these devices are on the order of a micron in diameter, providing 
large specific interfacial surface area for rapid chemical transport. The 
EPC has demonstrated performance over one hundred times better than 
current industrial machines in small-scale operations while requiring only 
a fraction of the energy to run the process (1 ) .  The EDR has been operated 
to produce dense, micron-sized, stoichiometrically homogeneous ceramic 
precursor materials (2). 

In order to optimize the performance of devices such as the EPC and 
the EDR, and to pave the way for other advances, a fundamental under- 
standing of the behavior of droplets and bubbles at the microscopic scale 
is needed. For instance, in development of the EPC, Scott (3) found that 
the electric field strength required for dispersion of free droplets of water 
in 2-ethyl-I-hexanol is dependent upon the frequency of applied voltage 
pulses. The required field strength varied greatly in the vicinity of the 
natural frequency of oscillation of inviscid fluids determined by Lamb ( 4 ) .  
A maximum in field strength was required for a pulse frequency very close 
to the Lamb frequency, while a minimum was achieved for a pulse fre- 
quency somewhat lower than the Lamb frequency, near the natural fre- 
quency of oscillation for viscous fluids (see below). Reliable information 
on oscillation frequency would be indispensable both for control of droplet 
size in a device and for tuning of frequency of applied voltage for mini- 
mization of energy consumption. 

Further work by Scott ( 5 )  aimed at determining the effect of frequency 
upon breakup of an aqueous stream exiting from a nozzle indicated that 
pulsed electrical fields could achieve dispersion at a lower root-mean- 
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OSCILLATION FREQUENCIES OF DROPLETS 2073 

square field strength than dc fields. In addition, the field strength required 
for effective dispersion by the pulsed fields varied as a function of the 
viscosities of the fluids. The two pulse frequencies tested displayed opposite 
trends, with the required field strength increased with increasing viscosity 
for the 2000 Hz case and decreased with increasing viscosity for the 200 
Hz case. The 2000 Hz pulse frequency required less power than the 200 
Hz one for the lower viscosities, while the 200 Hz pulse frequency required 
less power than the 2000 Hz one for the higher viscosities. Scott postulated 
that application of pulsed electrical fields at the resonance frequency of 
the liquid drops exiting the nozzle would minimize power requirements. 

Thus, a detailed understanding of the oscillations of pendant droplets 
could lead to improvements in an entire class of chemical processing de- 
vices. In this paper, a first step in understanding such processes, we report 
measurements of oscillation frequencies of droplets held pendant on a 
nozzle. Relevant theories of drop oscillations are reviewed in the next 
section, followed by a description of the experimental techniques. The 
results reported thereafter show that nonspherical shape and the presence 
of a solid support profoundly affect the oscillations of pendant drops. 

SUMMARY OF RELEVANT THEORIES 
A droplet will deform in response to an applied stress. If the perturbation 

is of sufficient magnitude, the droplet will break up, whereas for lesser 
amplitude perturbations the droplet will deform from its initial shape. From 
this distorted condition, the droplet will dissipate energy by, depending 
upon the droplet size and physical properties of the fluids, either aperiodic 
damped motion or by damped oscillations, leading finally to a return to 
the initial state. Damped oscillations of a single mode will occur with a 
characteristic frequency and damping factor. 

The oscillation of droplets and bubbles has been studied for over a 
hundred years (6). The most widely known treatment is that of Lamb ( 4 ) ,  
who considered infinitesimally small-amplitude, irrotational oscillations of 
an inviscid stationary spherical droplet in an inviscid medium. The fre- 
quency of oscillation of a droplet of radius R was found to be 

(1) 
yn(n  + l ) (n  - l ) (n  + 2) 

R ’r o* = ( 
where w *  is the “Lamb” frequency of oscillation (in radiadsecond, mean- 
ing the period of one oscillation is 2 7 ~ / 0 * ) ,  y is the interfacial tension, 
n is the integer value of the mode of oscillation ( n  2 Z), and r = p,n + 
pi(n + l), where pi is the density of the droplet fluid and p, is that of 
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2074 DePAOLI, SCOTT, AND BASARAN 

the surrounding fluid. This inviscid treatment cannot be used to predict 
the oscillation damping rate. 

Miller and Scriven (7) completed a comprehensive analytical treatment 
of the problem of infinitesimal-amplitude oscillations of stationary spherical 
fluid droplets of arbitrary viscosity in another viscous fluid. Complete so- 
lution of this equation requires finding the determinant of a nonlinear 7 x 7 
matrix. The frequency of oscillations, p, is a complex number, the real 
part of which, p R ,  corresponds to a decay factor, and the imaginary part, 
p,, is the angular frequency of oscillation. The authors did not solve the 
system of equations numerically; rather, they found analytical solutions 
for nine important limiting cases. The most practical of these solutions is 
the low-viscosity approximation (LVA), given in corrected form (see Refs. 
8-ZO) by 

(212 + 1)2(~*cLlPoPlPo)1i2 - (2n + 1)4PIPoPlPo 
2 V 2 ~ r [ ( p ~ p ~ ) ~ ~ ~  + (popo)ii2] 4Rzr2[(~l~l )1i2 + ( F ~ P ~ ) ~ ~ ~ ~ ~  

P R  = 

where p; is the viscosity of the drop and p0 is that of the continuous medium. 
Basaran et  al. (ZO) solved the complete set of equations for p numerically, 
thereby providing solutions that are valid for arbitrary viscosities and den- 
sities. 

Basaran (ZZ) presented a fully numerical solution for nonlinear oscil- 
lations of viscous free drops. This treatment, which assumed that pertur- 
bations are from spherical shape, with no gravity or other external fields, 
is not limited as to the viscosity of either fluid, and thus may be seen to 
fully describe oscillations of isolated spherical drops. Numerical solutions 
of this type hold promise for solution of any nonspherical case such as 
pendant droplets; however, application to each case will require adjust- 
ments for velocity profiles, applied fields, and/or boundary conditions. In 
addition, experiments with well-defined operating conditions and boundary 
conditions will be necessary to verify such calculation methods. 

Strani and Sabetta (12,13; hereafter referred to as SS1 and SS2) analyzed 
the small-amplitude oscillations of spherical drops immersed in a surround- 
ing fluid and in contact with a solid support. In their analytical treatment, 
the undeformed droplet was limited to a spherical shape, with the solid 
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support shaped as a portion of a spherical cavity of the same radius as the 
droplet. Both treatments considered axisymmetric oscillations only and 
neglected gravity. 

SS1 considered the case of inviscid fluids. The frequency of oscillation 
for this case may be calculated from the eigenvalues of a matrix with entries 
consisting of Green’s functions. The presence of the solid support was 
found to change the oscillation behavior from that of isolated drops in two 
ways: 1) an extra oscillation mode ( n  = l ) ,  corresponding to the aperiodic 
translation of an isolated drop, arises, and 2) the frequency of oscillation 
for the same size droplet is found to increase with increasing area of contact 
with the support. Oscillation frequencies for this inviscid constrained drop 
(ICD) treatment were found to correctly approach the Lamb frequency as 
the support size approaches zero. 

SS2 presented a viscous treatment that is similar to that in SS1, but which 
requires more complicated numerical calculations. The addition of viscous 
effects was found to decrease the predicted oscillation frequency slightly, 
and damping constants were predicted. For a system with p, = 1.002 
g/cm3, pi = 1.002 g/cm3, p, = 1.00 cP, and p i  = 4.41 cP, values for 
oscillation frequency were about 6% lower than predicted by ICD of SS1. 
Experimental results of frequency measurements for such fluids using flat 
supports were shown to be consistently lower than predictions, with errors 
of up to 10% for small support size, but reaching 30% for a support of 
the same radius as the drop. 

At present, there exists no theory for oscillations of droplets held pendant 
on a nozzle. The oscillations of isolated, spherical drops are fully described 
by Basaran (11); the frequency and damping of small amplitude oscillations 
may be estimated in closed-form by LVA of Miller and Scriven (7). The 
work of Strani and Sabetta has shown that the presence of a solid support 
will greatly affect the oscillation of spherical droplets; however, the re- 
strictive boundary conditions of their models do not strictly apply to a drop 
held pendant on a nozzle. The aim of this paper is to measure the oscillation 
frequencies of pendant drops and compare the results with models which 
may be most readily used by practitioners, namely the corrected LVA of 
Miller and Scriven and the ICD model of Strani and Sabetta. 

EXPERIMENTAL 
A schematic drawing of the experimental setup used is shown in Fig. 1. 

A stainless steel nozzle was held by a rigid clamp with its tip immersed in 
a cuvette filled with the surrounding fluid. Flexible silicone tubing con- 
nected the nozzle to a syringe filled with water. A portion of the tubing 
was held by a vibrational transducer (Alpha-M Corporation, Model AV- 
6). Activation of the transducer by a 25-W solid-state amplifier with a 
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VI B RAT I 0  N A L 
CONTROLLER 

SYRINGE CONTAINING 
DROPLET LIQUID 

P MONITOR 

\......I* 1 
TRANSPARENT CELL OSCILLOSCOPE 

CONTAINING OUTER FLUID 

FIG. 1 .  Experimental setup for studies of pendant drop oscillations. 

frequency range of 2 to 20,000 Hz (Alpha-M Corporation, Model OC-25) 
control unit would cause the tubing to be periodically compressed at a 
controlled frequency and amplitude. The frequency of oscillation and the 
amplitude of the input voltage to the transducer were monitored by an 
oscilloscope (Tektronix Inc., Model 504), while the size and shape of the 
droplet were observed by using a high-speed camera (Tri-Tronics Inc., 
Model PCSM-5600), monitor (Panasonic, Model TR124-MA), and a video 
position analyzer (FOR.A, Model VPA-100). 

The size of the droplet was set by manipulating the syringe. The vertical 
and maximum horizontal dimensions of each drop were measured using 
the video position analyzer. These measurements were converted to an 
equivalent radius of the sphere of the same volume through a correlation 
of profile measurements made on five droplets of various sizes for each 
fluid pair and nozzle. The transducer frequency was varied at moderate 
amplitude to find the approximate frequency of oscillation for the droplet, 
evidenced by motion of the interface. The amplitude was reduced and the 
frequency was adjusted until the point was reached at which motion of the 
interface was barely discernable (e.g., 5% radius variation). The fre- 
quency(ies) at which interface motion was maximized at the lowest dis- 
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OSCILLATION FREQUENCIES OF DROPLETS 2077 

cernable amplitude was recorded as the driven resonance oscillation fre- 
quency of the pendant droplet. 

RESULTS 
Oscillation frequencies of pendant droplets were determined using nozzle 

supports of two sizes: 1) 0.068 cm outside diameter (OD), 0.045 cm inside 
diameter (ID), and 2) 0.15 cm OD, 0.074 cm ID. The droplet fluid was 
water (p = 1.0 g/cm3, p = 1.0 cP), while surrounding fluids of air (p = 
0.0012 g/cm3, p. = 0.182 cP, y = 71.97 dyn/cm) and cyclohexane (p = 
0.779 glcm’, p = 0.88 cP, y = 50.2 dyn/cm) were used. 

Figure 2 shows sketches of the first three modes of oscillation of a 
pendant drop. The first mode appears similar to the prolate-oblate stretch- 
ing corresponding to the n = 2 mode of free drops; however, it is also 
worth noting that the approximate shape is predicted by the figure for 
it = 1 in SS1. Likewise, the other two modes shown have similarities to 
the corresponding shapes of both theories. 

Results obtained by the experimental means described above for the 
frequency of oscillation of the lowest mode in the water/air system are 
shown in Fig. 3. The symbols represent the experimental values of fre- 
quency as a function of droplet equivalent radius, while the curves are 
plots of the lowest mode ( n  = 2) of the low-viscosity approximation (LVA) 
for isolated drops of Miller and Scriven (7) and the lowest ( n  = 1) mode 
of the inviscid constrained drop (ICD) theory of SS1 for both nozzle sizes. 
As may be expected, the presence of the solid support caused the exper- 
imental frequencies to deviate greatly from the LVA; the measured fre- 
quencies were much lower than those predicted by the LVA for isolated 
drops. The results for both nozzle sizes are in qualitative agreement with 
the associated ICD curve. Agreement between the measurements and the 
theory of SS1 improves as drop size increases. As predicted by Strani and 
Sabetta, the oscillation frequency for a given drop size increases as the 
nozzle size increases. 

The pendant drop oscillation results for the water/cyclohexane system 
are compared to the ICD of SSl in Fig. 4. In this figure the dimensionless 
frequency, defined as the frequency of oscillation in radians per second 
multiplied by (p i r3 /y )”* ,  where r is the support radius, is plotted as a 
function of the dimensionless drop radius, defined as the ratio of the radius 
of the drop to that of the support. Results obtained with both nozzles fall 
upon the same curve in this dimensionless representation. Agreement with 
the model is quite good for drops whose radii are large relative to the 
nozzle radius, but as with the water/air system, there is much greater 
deviation as the dimensionless radius decreases. Moreover, the deviation 
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OBSERVED OSCILLATING PENDANT-DROP SHAPES 

FIRST MODE S E C O N D  M O D E  THIRD M O D E  

ti 
ti 

8 8 
OSCILLATING AXISYMMETRIC FREE-DROP SHAPES 

0 0 0 
0 V c3 

FIG. 2. Comparison of approximate observed shapes of the first three modes of oscillation 
of pendant drops with shapes of the first three modes of free drops that are neutrally buoyant 

in the surrounding fluid. 

between theory and experiment is greater for cyclohexane than for air; it 
is probable that the addition of viscous effects described by SS2 would 
account for part of this difference. 

DISCUSSION 
The pendant drop experiments and the inviscid theory of SS1 differ in 

several fundamental ways, including: 1) the support is different (a spherical 
section matching the drop radius for the theory and a flat tip for the 
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0 WATER IN AIR 
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ICD, n = i ,  0.068-crn OD NOZZLE 

0' I I 1 I I 
6.04 0.06 0.08 0.10 0.12 0. I4 0.16 

EQUIVALENT DROP RADIUS (cm) 

FIG. 3. Comparison of measured lowest-mode oscillation frequency of water drops held 
pendant on 0.16 cm outside diameter (OD) and 0.068 cm OD nozzles in air with low-viscosity 
approximation (LVA) for free drops of Miller and Scriven ( 1 )  and inviscid constrained drop 

(ICD) theory of Strani and Sabetta ( 2 ) .  

experiments), leading to different fluid mechanics where the drop wets the 
solid and a difficulty in definition and comparison of droplet and support 
dimensions; 2) the theory neglects gravity, which restricts undeformed 
drops to be spherical rather than distorted; 3) the theory is for inviscid 
fluids; and 4) the vertical component of fluid velocity within the nozzle 
was a small nonzero periodic function in the experiments rather than the 
imposed zero velocity normal to the spherical base in the model. Other 
important limitations of the experimental procedure may be noted, such 
as the fact that oscillations which are visually detected are slightly nonlinear 
and the mechanical means of excitation caused slight volume perturbation 
in the drops. Different methods of perturbation and detection, such as 
electrical excitation with detection similar to that of Trinh et al. (14), are 
planned by the authors for further investigation of the problem. 
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FIG. 4. Variation of the dimensionless frequency of oscillation of the lowest mode of pendant 
drops of water in cyclohexane with dimensionless radius: comparison of measurements and 

predictions of ICD. 

Despite these important differences, inviscid treatment of SS1 does ex- 
hibit several key features of the experimental results. It is apparent that 
the first oscillation mode ( n  = 1) of the ICD is in better agreement with 
the results than the first mode (n = 2) of Lamb or LVA. The experimental 
results diverge from the theoretical curves when the radius of the support 
approaches that of the drop, as might be suspected from the differences 
in the geometry of the supports and drops in the theory and experiment. 
Agreement on the whole would become slightly better with the addition 
of viscous forces, which slightly decrease the frequencies. The qualitative 
agreement is important, in that Strani and Sabetta predicted the presence 
of the n = 1 mode with a support, the frequency of wliich falls to zero as 
the support is eliminated. Indeed, for free drops the n = 1 mode is not 
allowed because it would move the center of mass of the drop. This first 
oscillation mode is further supported by the agreement between theory 
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and experimental observations of shapes of drops undergoing oscillations 
in the first three oscillation modes. 

CONCLUSIONS 
A mechanical oscillation technique has been developed and used to 

measure the resonance frequency of forced oscillations of pendant drops. 
The results obtained by this technique are in qualitative agreement with 
the inviscid constrained drop theory of Strani and Sabetta (12). The presence 
of a solid support, as with a pendant drop, greatly affects oscillation fre- 
quency by adding a lower mode of oscillation which is not allowed for 
nontranslating free drops. The relations of Miller and Scriven (7) cannot 
be applied accurately to the case of a pendant drop because of the different 
modes of oscillation and vastly different boundary conditions that apply 
to free drops as compared to supported ones. 

Although the inviscid theory of Strani and Sabetta (22) produced quali- 
tative agreement with the experimental results and good agreement when 
nozzle radius is small relative to the droplet radius, differences between 
the two are still great for smaller droplets. Thus, this theory is only useful 
as a first approximation to the natural frequency of oscillation of pendant 
drops. It is likely that better agreement will be achieved through the use 
of the viscous theory of Strani and Sabetta ( I 3 ) ;  however, the boundary 
conditions imposed by the theoretical model are too restrictive to apply to 
drops that are pendant from a nozzle. For full characterization of the 
dynamics of pendant drops, it will be necessary to develop numerical 
models which can capture all aspects of the problem, including undeformed 
shapes that are nonspherical and the presence of external forces. 
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NOMENCLATURE* 
mode number of oscillation (dimensionless) 
scaled radial distance (dimensionless) 
radius of solid support (L) 
radius of sphere having volume of drop (L) 
complex frequency of oscillation (T- l )  

imaginary part of P, corresponding to oscillation frequency (T-I) 
real part of P, corresponding to damping rate of oscillations (T-l) 
interfacial tension (M-T-2) 
p0n + pi(n + 1) (M-LW3) 
dynamic viscosity of drop fluid (M-L-l-T-') 
dynamic viscosity of surrounding fluid (M-L-'.T- ') 

*L = length, M = mass, T = time. 
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pi 
po 
o oscillation frequency (T-I) 
o* Lamb frequency (T-l) 

density of drop fluid (M-LW3) 
density of surrounding fluid (M.L-3) 
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