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Oscillation Frequencies of Droplets Held Pendant
on a Nozzle

D. W. DEPAOLI, T. C. SCOTT, and O. A. BASARAN

CHEMICAL TECHNOLOGY DIVISION
OAK RIDGE NATIONAL LABORATORY
OAK RIDGE, TENNESSEE 37831-6224

Abstract

Smali-amplitude oscillations of liquid droplets held pendant on a nozzle and
surrounded by either air or another liquid were investigated experimentally. The
oscillations were induced by mechanical means, and the natural frequencies of
oscillations were visually determined. Results are compared to existing related
theories of Miller and Scriven and of Strani and Sabetta. As may be expected, the
presence of the solid support causes measured oscillation frequencies for the lowest
oscillation mode to deviate greatly from the Miller and Scriven low viscosity ap-
proximation (n = 2) for free spherical drops. Experiments are in qualitative agree-
ment with the first (# = 1) mode predicted by Strani and Sabetta, with the best
correspondence occurring under circumstances where the ratio of nozzle to drop
radii is small. The difference between the experimental results and the theory of
Strani and Sabetta can be attributed to the restrictive boundary conditions of their
analytic model. Thus, better theoretical characterization of pendant droplet oscil-
lations will require numerical computations.

INTRODUCTION

The behavior of droplets and bubbles is of importance in a multitude of
applications within the chemical industry as well as such diverse fields as
meteorology, printing and paint spraying, and mathematical science.
Within the chemical industry the behavior of bubbles and droplets is a
major factor in the operation of most multiphase systems such as reactors
and separations equipment.

The efficiency of these devices is determined to a large extent by the
rate of heat and/or mass transfer between drops or bubbles and the con-
tinuous phase. To improve performance, one must provide the means to
increase transport rates. Two obvious physical means are to increase the
interfacial surface area relative to fluid volume and to increase fluid ve-
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locities to enhance convection. This is commonly achieved through the
introduction of finely dispersed fluids througi nozzles and by bulk fluid
agitation. While such an approach achieves the desired results, it represents
an inefficient usage of energy.

The next generation of chemical processing equipment will be designed
with energy efficiency and waste minimization as primary goals. As such,
increased performance, leading to better materials utilization, must be
achieved without wasteful use of energy. Major steps toward these goals
have been achieved through the application of external fields in chemical
processing equipment (I, 2). Two examples recently developed at Oak
Ridge National Laboratory are the emulsion-phase contactor (EPC), an
advanced solvent extraction device, and the electric dispersion reactor
(EDR), an advanced multiphase liquid reactor. Both of these devices take
advantage of the fact that applied electrical fields may be used to impart
a force at the interface of two fluids with differing electrical properties.
This force may be used to deform and disperse droplets or bubbles at a
much lower energy consumption rate than by mechanical dispersion. Drop-
let sizes in these devices are on the order of a micron in diameter, providing
large specific interfacial surface area for rapid chemical transport. The
EPC has demonstrated performance over one hundred times better than
current industrial machines in small-scale operations while requiring only
a fraction of the energy to run the process (/). The EDR has been operated
to produce dense, micron-sized, stoichiometrically homogeneous ceramic
precursor materials (2).

In order to optimize the performance of devices such as the EPC and
the EDR, and to pave the way for other advances, a fundamental under-
standing of the behavior of droplets and bubbles at the microscopic scale
is needed. For instance, in development of the EPC, Scott (3) found that
the electric field strength required for dispersion of free droplets of water
in 2-ethyl-1-hexanol is dependent upon the frequency of applied voitage
pulses. The required field strength varied greatly in the vicinity of the
natural frequency of oscillation of inviscid fluids determined by Lamb (4).
A maximum in field strength was required for a pulse frequency very close
to the Lamb frequency, while a minimum was achieved for a pulse fre-
quency somewhat lower than the Lamb frequency, near the natural fre-
quency of oscillation for viscous fluids (see below). Reliable information
on oscillation frequency would be indispensable both for control of droplet
size in a device and for tuning of frequency of applied voltage for mini-
mization of energy consumption.

Further work by Scott (5) aimed at determining the effect of frequency
upon breakup of an aqueous stream exiting from a nozzle indicated that
pulsed electrical fields could achieve dispersion at a lower root-mean-
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square field strength than dc fields. In addition, the field strength required
for effective dispersion by the pulsed fields varied as a function of the
viscosities of the fluids. The two pulse frequencies tested displayed opposite
trends, with the required field strength increased with increasing viscosity
for the 2000 Hz case and decreased with increasing viscosity for the 200
Hz case. The 2000 Hz pulse frequency required less power than the 200
Hz one for the lower viscosities, while the 200 Hz pulse frequency required
less power than the 2000 Hz one for the higher viscosities. Scott postulated
that application of pulsed electrical fields at the resonance frequency of
the liquid drops exiting the nozzle would minimize power requirements.

Thus, a detailed understanding of the oscillations of pendant droplets
could lead to improvements in an entire class of chemical processing de-
vices. In this paper, a first step in understanding such processes, we report
measurements of oscillation frequencies of droplets held pendant on a
nozzle. Relevant theories of drop oscillations are reviewed in the next
section, followed by a description of the experimental techniques. The
results reported thereafter show that nonspherical shape and the presence
of a solid support profoundly affect the oscillations of pendant drops.

SUMMARY OF RELEVANT THEORIES

A droplet will deform in response to an applied stress. If the perturbation
is of sufficient magnitude, the droplet will break up, whereas for lesser
amplitude perturbations the droplet will deform from its initial shape. From
this distorted condition, the droplet will dissipate energy by, depending
upon the droplet size and physical properties of the fluids, either aperiodic
damped motion or by damped oscillations, leading finally to a return to
the initial state. Damped oscillations of a single mode will occur with a
characteristic frequency and damping factor.

The oscillation of droplets and bubbles has been studied for over a
hundred years (6). The most widely known treatment is that of Lamb (4),
who considered infinitesimally small-amplitude, irrotational oscillations of
an inviscid stationary spherical droplet in an inviscid medium. The fre-
quency of oscillation of a droplet of radius R was found to be

oF = <'yn(n + D(n — )(n + 2))”2 )

RT

where w* is the “Lamb” frequency of oscillation (in radians/second, mean-
ing the period of one oscillation is 2mw/w*), 7y is the interfacial tension,
n is the integer value of the mode of oscillation (n = 2), and I' = p,n +
p{n + 1), where p; is the density of the droplet fluid and p, is that of
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the surrounding fluid. This inviscid treatment cannot be used to predict
the oscillation damping rate.

Miller and Scriven (7) completed a comprehensive analytical treatment
of the problem of infinitesimal-amplitude oscillations of stationary spherical
fluid droplets of arbitrary viscosity in another viscous fluid. Complete so-
lution of this equation requires finding the determinant of a nonlinear 7x7
matrix. The frequency of oscillations, B, is a complex number, the real
part of which, Bg, corresponds to a decay factor, and the imaginary part,
B, is the angular frequency of oscillation. The authors did not solve the
system of equations numerically; rather, they found analytical solutions
for nine important limiting cases. The most practical of these solutions is
the low-viscosity approximation (LVA), given in corrected form (see Refs.
8-10) by

By = (2n + D(@*pipopip)'? (2n_+ D'mipopipo
" TO2VRRI[(ip)? + (Bopn)] ART{(p) + (popo) P

(2n + D[2(n* — Dudp; + 2n(n + 2)pep,
+ poplp(n + 2) — po(n — 1))]
2RA[(ip)'* + (Ropo)'?]

* (271 + 1)2(('0*}""il“'opi’*)o)”2
2V2RT[(mp)"> + (o)l

+

B/=0w=ow n=234 .. (2
where p,; is the viscosity of the drop and p,, is that of the continuous medium.
Basaran et al. (10) solved the complete set of equations for § numerically,
thereby providing solutions that are valid for arbitrary viscosities and den-
sities.

Basaran (/1) presented a fully numerical solution for nonlinear oscil-
lations of viscous free drops. This treatment, which assumed that pertur-
bations are from spherical shape, with no gravity or other external fields,
is not limited as to the viscosity of either fluid, and thus may be seen to
fully describe oscillations of isolated spherical drops. Numerical solutions
of this type hold promise for solution of any nonspherical case such as
pendant droplets; however, application to each case will require adjust-
ments for velocity profiles, applied fields, and/or boundary conditions. In
addition, experiments with well-defined operating conditions and boundary
conditions will be necessary to verify such calculation methods.

Strani and Sabetta (12, 13; hereafter referred to as SS1 and SS2) analyzed
the small-amplitude oscillations of spherical drops immersed in a surround-
ing fluid and in contact with a solid support. In their analytical treatment,
the undeformed droplet was limited to a spherical shape, with the solid
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support shaped as a portion of a spherical cavity of the same radius as the
droplet. Both treatments considered axisymmetric oscillations only and
neglected gravity.

SS1 considered the case of inviscid fluids. The frequency of oscillation
for this case may be calculated from the eigenvalues of a matrix with entries
consisting of Green’s functions. The presence of the solid support was
found to change the oscillation behavior from that of isolated drops in two
ways: 1) an extra oscillation mode (n = 1), corresponding to the aperiodic
translation of an isolated drop, arises, and 2) the frequency of oscillation
for the same size droplet is found to increase with increasing area of contact
with the support. Oscillation frequencies for this inviscid constrained drop
(ICD) treatment were found to correctly approach the Lamb frequency as
the support size approaches zero.

SS2 presented a viscous treatment that is similar to that in SS1, but which
requires more complicated numerical calculations. The addition of viscous
effects was found to decrease the predicted oscillation frequency slightly,
and damping constants were predicted. For a system with p, = 1.002
g/em®, p; = 1.002 g/ecm?®, p, = 1.00 cP, and p, = 4.41 cP, values for
oscillation frequency were about 6% lower than predicted by ICD of SS1.
Experimental results of frequency measurements for such fluids using flat
supports were shown to be consistently lower than predictions, with errors
of up to 10% for small support size, but reaching 30% for a support of
the same radius as the drop.

At present, there exists no theory for oscillations of droplets held pendant
on a nozzle. The oscillations of isolated, spherical drops are fully described
by Basaran (11); the frequency and damping of small amplitude oscillations
may be estimated in closed-form by LVA of Miller and Scriven (7). The
work of Strani and Sabetta has shown that the presence of a solid support
will greatly affect the oscillation of spherical droplets; however, the re-
strictive boundary conditions of their models do not strictly apply to a drop
held pendant on a nozzle. The aim of this paper is to measure the oscillation
frequencies of pendant drops and compare the results with models which
may be most readily used by practitioners, namely the corrected LVA of
Miller and Scriven and the ICD model of Strani and Sabetta.

EXPERIMENTAL
A schematic drawing of the experimental setup used is shown in Fig. 1.
A stainless steel nozzle was held by a rigid clamp with its tip immersed in
a cuvette filled with the surrounding fluid. Flexible silicone tubing con-
nected the nozzle to a syringe filled with water. A portion of the tubing
was held by a vibrational transducer (Alpha-M Corporation, Model AV-
6). Activation of the transducer by a 25-W solid-state amplifier with a



12: 30 25 January 2011

Downl oaded At:

2076 DePAOLI, SCOTT, AND BASARAN

[I]]Im SYRINGE CONTAINING
=] DROPLET LIQUID
[
VIBRATIONAL
CONTROLLER
T TRANSDUGER
MONITOR
NOZZLE
omens [fi] |8 Wy
TRANSPARENT CELL OSCILLOSCOPE

CONTAINING OUTER FLUID

FiG. 1. Experimental setup for studies of pendant drop oscillations.

frequency range of 2 to 20,000 Hz (Alpha-M Corporation, Model OC-25)
control unit would cause the tubing to be periodically compressed at a
controlled frequency and amplitude. The frequency of oscillation and the
amplitude of the input voltage to the transducer were monitored by an
oscilloscope (Tektronix Inc., Model 504), while the size and shape of the
droplet were observed by using a high-speed camera (Tri-Tronics Inc.,
Model PCSM-5600), monitor (Panasonic, Model TR124-MA), and a video
position analyzer (FOR.A, Model VPA-100).

The size of the droplet was set by manipulating the syringe. The vertical
and maximum horizontal dimensions of each drop were measured using
the video position analyzer. These measurements were converted to an
equivalent radius of the sphere of the same volume through a correlation
of profile measurements made on five droplets of various sizes for each
fluid pair and nozzle. The transducer frequency was varied at moderate
amplitude to find the approximate frequency of oscillation for the droplet,
evidenced by motion of the interface. The amplitude was reduced and the
frequency was adjusted until the point was reached at which motion of the
interface was barely discernable (e.g., 5% radius variation). The fre-
quency(ies) at which interface motion was maximized at the lowest dis-
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cernable amplitude was recorded as the driven resonance oscillation fre-
quency of the pendant droplet.

RESULTS

Oscillation frequencies of pendant droplets were determined using nozzle
supports of two sizes: 1) 0.068 cm outside diameter (OD), 0.045 c¢m inside
diameter (ID), and 2) 0.15 cm OD, 0.074 cm ID. The droplet fluid was
water (p = 1.0 g/cm?, p = 1.0 cP), while surrounding fluids of air (p =
0.0012 g/em®, p = 0.182 cP, y = 71.97 dyn/cm) and cyclohexane (p =
0.779 g/cm?®, . = 0.88 ¢P, y = 50.2 dyn/cm) were used.

Figure 2 shows sketches of the first three modes of oscillation of a
pendant drop. The first mode appears similar to the prolate-oblate stretch-
ing corresponding to the n = 2 mode of free drops; however, it is also
worth noting that the approximate shape is predicted by the figure for
n = 1 in SS1. Likewise, the other two modes shown have similarities to
the corresponding shapes of both theories.

Results obtained by the experimental means described above for the
frequency of oscillation of the lowest mode in the water/air system are
shown in Fig. 3. The symbols represent the experimental values of fre-
quency as a function of droplet equivalent radius, while the curves are
plots of the lowest mode (n = 2) of the low-viscosity approximation (LVA)
for isolated drops of Miller and Scriven (7) and the lowest (n = 1) mode
of the inviscid constrained drop (ICD) theory of SS1 for both nozzle sizes.
As may be expected, the presence of the solid support caused the exper-
imental frequencies to deviate greatly from the LVA; the measured fre-
quencies were much lower than those predicted by the LVA for isolated
drops. The results for both nozzle sizes are in qualitative agreement with
the associated ICD curve. Agreement between the measurements and the
theory of SS1 improves as drop size increases. As predicted by Strani and
Sabetta, the oscillation frequency for a given drop size increases as the
nozzle size increases.

The pendant drop oscillation results for the water/cyclohexane system
are compared to the ICD of SS1 in Fig. 4. In this figure the dimensionless
frequency, defined as the frequency of oscillation in radians per second
multiplied by (p;r*/v)¥2, where r is the support radius, is plotted as a
function of the dimensionless drop radius, defined as the ratio of the radius
of the drop to that of the support. Results obtained with both nozzles fall
upon the same curve in this dimensionless representation. Agreement with
the model is quite good for drops whose radii are large relative to the
nozzle radius, but as with the water/air system, there is much greater
deviation as the dimensionless radius decreases. Moreover, the deviation
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FiG. 2. Comparison of approximate observed shapes of the first three modes of oscillation
of pendant drops with shapes of the first three modes of free drops that are neutrally buoyant
in the surrounding fluid.

between theory and experiment is greater for cyclohexane than for air; it
is probable that the addition of viscous effects described by SS2 would
account for part of this difference.

DISCUSSION
The pendant drop experiments and the inviscid theory of SS1 differ in
several fundamental ways, including: 1) the support is different (a spherical
section matching the drop radius for the theory and a flat tip for the
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FiG. 3. Comparison of measured lowest-mode oscillation frequency of water drops held

pendant on 0.16 cm outside diameter (OD) and 0.068 cm OD nozzles in air with low-viscosity

approximation (LVA) for free drops of Miller and Scriven (/) and inviscid constrained drop
(ICD) theory of Strani and Sabetta (2).

experiments), leading to different fluid mechanics where the drop wets the
solid and a difficulty in definition and comparison of droplet and support
dimensions; 2) the theory neglects gravity, which restricts undeformed
drops to be spherical rather than distorted; 3) the theory is for inviscid
fluids; and 4) the vertical component of fluid velocity within the nozzle
was a small nonzero periodic function in the experiments rather than the
imposed zero velocity normal to the spherical base in the model. Other
important limitations of the experimental procedure may be noted, such
as the fact that oscillations which are visually detected are slightly nonlinear
and the mechanical means of excitation caused slight volume perturbation
in the drops. Different methods of perturbation and detection, such as
electrical excitation with detection similar to that of Trinh et al. (14), are
planned by the authors for further investigation of the problem.
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F1G. 4. Variation of the dimensionless frequency of oscillation of the lowest mode of pendant
drops of water in cyclohexane with dimensionless radius: comparison of measurements and
predictions of ICD.

Despite these important differences, inviscid treatment of SS1 does ex-
hibit several key features of the experimental resuits. It is apparent that
the first oscillation mode (# = 1) of the ICD is in better agreement with
the results than the first mode (n = 2) of Lamb or LVA. The experimental
results diverge from the theoretical curves when the radius of the support
approaches that of the drop, as might be suspected from the differences
in the geometry of the supports and drops in the theory and experiment.
Agreement on the whole would become slightly better with the addition
of viscous forces, which slightly decrease the frequencies. The qualitative
agreement is important, in that Strani and Sabetta predicted the presence
of the n = 1 mode with a support, the frequency of which falls to zero as
the support is eliminated. Indeed, for free drops the n = 1 mode is not
allowed because it would move the center of mass of the drop. This first
oscillation mode is further supported by the agreement between theory
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and experimental observations of shapes of drops undergoing oscillations
in the first three oscillation modes.

CONCLUSIONS

A mechanical oscillation technique has been developed and used to
measure the resonance frequency of forced oscillations of pendant drops.
The results obtained by this technique are in qualitative agreement with
the inviscid constrained drop theory of Strani and Sabetta (12). The presence
of a solid support, as with a pendant drop, greatly affects oscillation fre-
quency by adding a lower mode of oscillation which is not allowed for
nontranslating free drops. The relations of Miller and Scriven (7) cannot
be applied accurately to the case of a pendant drop because of the different
modes of oscillation and vastly different boundary conditions that apply
to free drops as compared to supported ones.

Although the inviscid theory of Strani and Sabetta (12) produced quali-
tative agreement with the experimental results and good agreement when
nozzle radius is small relative to the droplet radius, differences between
the two are still great for smaller droplets. Thus, this theory is only useful
as a first approximation to the natural frequency of oscillation of pendant
drops. It is likely that better agreement will be achieved through the use
of the viscous theory of Strani and Sabetta (13); however, the boundary
conditions imposed by the theoretical model are too restrictive to apply to
drops that are pendant from a nozzle. For full characterization of the
dynamics of pendant drops, it will be necessary to develop numerical
models which can capture all aspects of the problem, including undeformed
shapes that are nonspherical and the presence of external forces.

NOMENCLATURE*
n mode number of oscillation (dimensionless)
r scaled radial distance (dimensionless)
Ty radius of solid support (L)
R radius of sphere having volume of drop (L)
B complex frequency of oscillation (T 1)
B, imaginary part of 8, corresponding to oscillation frequency (T-")
Br real part of B, corresponding to damping rate of oscillations (T~!)
Y interfacial tension (M-T~?)

r pot + pn + 1) (ML)
B dynamic viscosity of drop fluid (M-L~!-T"1)
Mo dynamic viscosity of surrounding fluid (M-L~!-T"1!)

*L = length, M = mass, T = time.
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pi density of drop fluid (M-L%)

P, density of surrounding fluid (M-L~3)
® oscillation frequency (T™*)

o* Lamb frequency (T™')
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